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Abstract. The dispersionless-Boussesq and Benney-Lax equations are equations of 
hydrodynamic type which can be obtained as reductions of the dispersionless 
Kadomtsev-Petviashvili equation. We find that for the three-component reduction, the 
dispersionless Boussinesq and Benney-Lax equations are the same up to a diffeomorph- 
ism. This equivalence becomes manifest when the equations of motion are cast into the 
form of a triplet of conservation laws. Furthermore, in this form we are able to recognize a 
non-trivial scaling symmetry of these equations which plays an important role in the 
construction of their bi-Hamiltonian structure. We exhibit a pair of compatible 
Hamiltonian operators which belong to a restricted class of Dubrovin and Novikov 
operators appropriate to a system of conservation laws. The recursion operator for this 
system generates three inhi te  sequences of conserved Hamiltonians. 

1. Introduction 

The system of first-order quasi-linear evolution equations were called equations of 
hydrodynamic type by Dubrovin and Novikov [l] who found that the natural 
Hamiltonian structure of these equations is given by a first-order operator which is 
defined in terms of a flat Riemannian metric. Equations of hydrodynamic type quite 
often admit at least bi-Hamiltonian structure and are therefore completely integrable 
according to Magri's theorem [Z]. The remarkable result that the geometry of the 
space of field variables plays a fundamental role in the definition of the 
Dubrovin-Novikov operator has attracted much attention. We refer to [3] for a 
survey of the Russian literature on this subject. The simplest systems that give rise to 
two-component equations of hydrodynamic type are classical quasi-linear second- 
order wave equations associated with the names of Euler, Poisson and 
Chaplygin-Born-Infeld. The multi-Hamiltonian structure of these equations was 
given in [4-91. For more than two components there are only a few examples of 
equations of hydrodynamic type, see Tsarev [lo] for a list of physically interesting 
equations. Prominent among those is Zakharov's Ill] multi-layered shallow water 
equations. 

Mathematically, equations of hydrodynamic type appear naturally as reductions of 
the Zabolotskaya-Khokhlov (ZK) equation, which is also referred to as the disper- 
sionless Kadomtsev-Petviashvili (KP) equation. These reductions are due Zakharov 
[ll], Gibbons and Kodama [12] and Kodama [13,14]. In this paper we shall be 
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concerned with some three-component reductions of the zrc-equation and present 
their bi-Hamiltonian structure. 
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2. Hamiltonian stuctures of hydrodynamic type 

Equations of hydrodynamic type consist of the system of first-order quasi-linear 
evolution equations 

uf=v;(u"u: i = l , 2 . .  . . .n (1) 

~g =gZqu)D - g" r!nk (2) 

and their multi-Hamiltonian structure is given by the Dubrovin-Novikov operator 

where gii are the contravariant components of a Riemannian metric with vanishing 
curvature and r;, are the Christoffel symbols for the Levi-Civita connection compat- 
ible with this metric. D denotes the total derivative with respect to x .  

The Hamiltonian functional associated with this operator is defined by the zeroth- 
order conserved densities of the system (1). They can be obtained as solutions of the 
system of second-order equations 

aiakH v; = a,a,H U: (3) 
which is an overdetermined system. We shall be concerned with equations of 
hydrodynamic type which are expressible in the form of conservation laws, that is the 
1-forms 

o'=viduk (4) 
are closed, do'=O. If the given basis {U'} is not closed, then we shall suppose that 
there exists a transformation S i  such that 

u+s*u V-+S~V~S'' (5) 
whereby the transformed basis 1-forms are closed. 

We shall consider a subclass of owtype operators 

J=(r + r y +  r, 
which are defined in terms of a single matrix I'. This form of Hamiltonian operator, 
which we shall call Dubrovin-Novikov-Liouville-Poisson-type operators, is the one 
appropriate to a reformulation of (1) in terms of conserved quantities. There will be 
no confusion of the matrix r with the Christoffel symbols which will not be used any 
further in this paper. The Hamiltonian flow appropriate to the operator (6) is given by 

o = ( T +  r).dVH+dI'.VH (7) 
where V =  (a l , .  . . ,&)'with respect to U' and 

do= d I" AdVH 

which vanishes for conservative systems. 
Equations of hydrodynamic  type^ which are in the form of conservation laws admit 

a first Hamiltonian structure with constant coefficients which can be brought to the 
form 
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without loss of generality. This is an involution 

(10) v ' U  . ? - I  = U '  

for the conservative form of the equations of motion. The metric r ]  enters into the 
definition of the conserved quantity 

Ho = 'I,, U 'U' (11) 

which usually corresponds to momentum. 
When the entries of the matrix r are expressed in terms of vectorial quantities 

appearing in its columns, (7) and (8) as well as the Jacobi identities and the 
compatibility condition can be written in a compact form. To be more specific, for 
n = 3  we let 

and introduce the column vectors y'  of r and p' of r' with the components given 
according to (12) and 

Then, from (8) we find the following nine equations 

p:=p: p:=p; p;=p', (14) 

For the elementary conserved quantity Ho.  
The Jacobi identities are the coefficients of independent tri-vectors and they become 
simply 

((p + pvy. v)p'l = 0 (15) 

(y!')'.vyfl =o (16) 

where square brackets denote anti-symmetrization. The same formulas apply to 
n-component DNLP-type operators as well. 

3. d-Boussinesq and Benney-Lax equations 

The dispersionless Boussinesq equations 

have been considered by Kodama [13] in connection with the reduction of the 
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zK-equation and were shown to admit the conserved densities 
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HI = w 1  2 - - w  z H3 = w3+ ( w  I)’ 
H~=(w’)’+ w’w’+ &w’)’=HI Hi+ $Hi  

Hj = ~ ( W ‘ ) ~ W ~  + W*W’ = Hz(H3 - $H:) 

. . .  (18) 
which are infinite in number. In another context, Gibbons and Kodama [12] studied 
the Lax reduction of the Benney moment equations whose first flow is given by 

and they showed that it also admits an infinite sequence of conserved densities 

K I = u l  K 2 = u z  K ]  = U 3  - +(U’)’ K 4 = 0  

K j  = .-+(U93 + U ’U 3 +:(U 1)2 = K1 K ,  + :K: 
&= - ( U I ) ’ U ’  + u2u3= - +K: K2 + K2K3 

K,= - %u’(u’)’ + + ( u ~ ) ~  - $ ( u ] ) ~ u ~  + ;(U -4KI K: + { K j  + S K f  

. . .  (20) 
Equations (17) and (19) are not in conservative form as in both cases the third 
component of ois not closed, However. the Pfaff system {oi} is an integrable one. For 
instance, in the case of (17) du’=du’=O and 

do3= - 2 d w ’ A ~ ’  

which satisfies Frobenius’ criterion for integrability. If we choose new coordinates 
from the infinite sequence of conserved densities 

( u , w , u ) = ( w ’ ,  w2, w3+(w1)2) (21) 
we find that (17) are cast into the form of conservation laws 

There is also a similar transformation for the Benney-Lax equations that brings them 
to manifestly conservative form. This is given by 

( u , w , u ) = ( u I , u ’ , u 3 - : ( u 1 ) ~ )  (23) 
and the result is again (22). Thus the Kodama reduction of the dispersionless 
Boussinesq equation (17) and the Lax reduction of the Benney moment equations 
(19) are equivalent. Henceforth we shall be primarily concerned with the system (22). 
The results for (17) and (19) can be obtained through the transformations (21) and 
(23). 

3.1. Bi-Hamiltonian shucrure 
Since the systems (17) and (19) can be put into a form of a triplet of conservation laws 
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(22), it follows that they admit 

Jk = D "D (24) 

as first Hamiltonian operator. The Hamiltonian density appropriate to this operator is 
given by 

HI = - fo'w + uw (25) 
which is the image of Hs under the transformation (21). 

The system (17) has no non-trivial scaling symmetry among the field variables 
' whereas the fields in (22) as well as those of (19) can be assigned dimensions [9.15] 

[ 4 = 1  [w]=I [u]=2 (26) 
and this requires [x] - [t] = f. In the new variables, the conserved densities of the 
system (17) become 

U ,  w,u,uo+fw2,UW--)wv2,. . . (27) 
with dimension 

1,2,2,3,$ , . . .  
which indicates that a conserved density with dimension 5 is absent. This fact 
manifests itelf in a non-existence result for a second Hamiltonian structure with the 
momentum density (11). Although all our earlier results about the equations of 
hydrodynamic type use the momentum as the Hamiltonian density of the second 
structure, &'e have now an example where this is not so. The proper choice of the 
Hamiltonian density is a crucial step in the construction of the second Hamiltonian 
structure. We shall first construct the Hamiltonian operator by analysing further the 
equations (7) and (8), and then determine the appropriate Hamiltonian density. 

For the second Hamiltonian stucture of (22) we find from (8) and (14) that 

p:= - wp:- up: 
p i =  - wp:+p:  p;= - wp;- up: (28) 
p;=p; p; = p i  

p:= - wp:+ uzp: 

while equations (7) reduce to 

2h = 2 0 ' ~ -  ~ ( k  + 4) 

g+l= 2wp - u(k+ 4) (29) 
2m = f+ r-2op. 

It turns out that (28) and the relations (29) are necessary and sufficient for the 
satisfaction of the equations (15) and (16) resulting from the Jacobi identity. 

The integrability conditions of (28) give three vector equations 

p:w=-wp:.-up:w 
p;,= - !+-I  Y.W+ o 4 : ,  (30) 
p:,= - up:" + p:" 

which when written in component form are simply the equations (3) satisfied by the 
zeroth-order conserved densities. Thus the functins p ,  q and r must be elements of the 
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sequence (27) of conserved densities. The proper choice of the entries of the first row 
of r can be done most conveniently by analysing the dimensions of the elements in the 
second Hamiltonian operator. We find that for (22) 
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U -2uw u3-tw’ 
r= w 2 u - ~ 2  - 3 u ~  

U 2w i 
and the resultng DNLP-type Hamiltonian operator ( 6 )  is given by 

2u 3w 4u U 2w 3u 
I =  3w 4u-2u2  -5uw ,) D + [  w 2u-U’  -3uw ] ’ (32) 1 4u -5uw 2u3-3w2 ,  U -2uw u’-+w’I I 

Thus we have the second Hamiltonian structure. The Hamiltonian density that yields 
the equations of motion (22) for the second Hamiltonian operator is w12. 

The Hamiltonian operator (32) satisfies the Jacobi identities. This can be verified 
by checking that (15) and (16) are satisfied for (31).  There is, however, an alternative 
proof which is based on the theorem of Dubrovin and Novikov. From the expression 
r + r we can read off the contravariant components of a metric w,hich should be flat if 
the Jacobi identities are satisfied. Inverting it we find that the metric is given by 

ds2 = A - ’ [ ( ~ u u ’  - 1 2 ~ ~ ’ -  40’- 19u2wm2) do2 + ( ~ U U  - 4 ~ ’ -  9 ~ ’ )  du2 

+2(  -8u2+  20‘- 3 0 ~ ’ )  dw’+ 2( - 16u2+ 8 ~ 0 ’  - 1 5 ~ ~ ’ )  du do 

+ 2w( - 2Ouu - 6u3 + 9 ~ ’ )  du dw - 4 w ( 6 ~  + 50’) du dw] (33) 

where 

A = - 6 4 ~ ~ + 3 2 ~ ~ 0 ~ + 1 6 ~ ~ ‘ - 1 4 4 ~ 0 ~ ~  - 8 ~ ~ -  S6u’wz+ 2 7 ~ ‘  (34) 

is the inverse of the determinant of the metric. It can be verified directly that all the 
components of the Riemann tensor vanish identically for the metric (33).  The 
recursion operator 

R =(r + rf) .V + rX.VD-’ 

U * uu+:w2 + ~ 1 U ~ U + f W ~ U - ~ u ~ W 2 - ~ , , ~  

U + 2 -  t o w ’ +  iu4-4u3+  :u04-;w4+ :u~w2-yuuw’ 

(35) 

divides the sequence (27) into three infinite sequences 

+U,-? uw-+wu’ * 3 w u ~ - 3 u w u 2 + ~ w u ~ - 2 u w 3  (36) 

because its action is confined to any one of them. As in all equations of hydrodynamic 
type, the existence of an operator that will carry a conserved quantity in one sequence 
into an element of another sequence remains an open question. We note that once 
again alau plays the role of the inverse of the recursion operator. Finally, there is no 
conserved quantity with dimension (1 +4n) /2 ,  n = 1 ,2 ,  . . . in any of the above 
seqeunces. The missing density with dimension 2 is only the first of its kind. 

The bi-Hamiltonian structure of the dispersionless Boussinesq equation (17) can 
be obtained using the inverse transformation (21).  The first Hamiltonian operator 
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becomes 

D 
0 

D 0 -2(w'D+Dw')  

(37) 

with the Hamiltonian function Hs.  and the second Hamiltonian operator is given by 

i D  3w2 4w' 

4w3 - l l w 1 w 2  - 1 6 ~ ~ ~ ' - 3 ( ~ * ) ~ - 6 ( ~ ~ ) ' ,  
J ' =  3w* 2(2w3+(w1)?) - Ilw'wZ 

1 (38) 

zw: 3w: 
+ w~ (2w3+(w1)2),  -5w1w:-9w2w: 

[ 2 w 1  

iw: W :  -6wiw~-2w'w: - ( 3 ( ~ ' ) ' +  $(w?)~+ S W ' W ' ) ,  

and the corresponding Hamiltonian density is w2/12. Note that the first operator is of 
DNw-type, that is, it can be written on the form of Jl in (6),  whereas the second one is 
not. This is another indication that DNLP opertors are natural for the conservative 
form of the equations of motion. 

4. Conclusions 

One of the techniques for studying equations of hydrodynamic type consists in the use 
of Riemann invariants as dependent variables. This is a powerful method because the 
matrix U: is then diagonalized. It has yielded many interesting results [3]. An 
alternative approach starts with the equations of motion written in the form of 
conservation laws. The variables that enter into such a formulation are often the 
physical variables. We have shown that in terms of the physical variables the 
Hamiltonian operator is expressible in the DNLP form (6) which is a reduction of the 
Dubrovin-Novikov operator. This approach is also useful because it manifests a 
scaling symmetry of the equations of motion which carries over into the elements of 
the second Hamiltonian operator. Its virtue lies in the fact that it does not require us 
to guess the correct Hamiltonian density before the Hamiltonian operator is available. 
The example of (22) is very instructive in this regard. 
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